note PA2
To calculate \(T(n) \ (n > 1)\) with \(\log_2 n\) equations.
\begin{eqnarray} T(n) &=& a + 2T(n/2) + bn \\
2T(n/2) &=& 2a + 4T(n/4) + bn/2 \cdot 2 \\
4T(n/4) &=& 4a + 8T(n/8) + bn/4 \cdot 4 \\
&\vdots& \\
n/2 T(2) &=& an/2 + nT(1) + bn \end{eqnarray}
Therefour, \(T(n) = a(1 + 2 + \cdots + n/2) + nT(1) + b(n + n + \cdots + n) \).
Denote
\(A(n) = a(1 + 2 + \cdots + n/2)\)
\(B(n) = b (n + n + \cdots +n) \)
\(A(n) < a(n + n + \cdots + n) = an \log_2 n\)
\(B(n) = bn \log_2 n \in \Theta(n \log n)\) and \(A(n) < B(n)\).
\(T(1)\) is a constant, then \(T(n) \in \Theta(n \log n)\)
Then, \(T(n) \in \Theta(n)\).